References: Qwen-blog
Qwen overall architecture:
Among them:
tokenizer
converts text into values in the vocabulary.- The values are transformed into corresponding vectors through
embedding
. attention_mask
is used to set visibility for left, right, bidirectional, etc.- Various downstream tasks, such as
Casual
,seqcls
, etc., are basically the basic modelmodel
followed by the correspondingLinear
layer, with different loss functions.
First, download the transformer repository from GitHub and name it transformer_213 (because I downloaded it on the date 2.13), this step is to prevent confusion with the package.
Define run_demo.ipynb to learn about qwen2 in detail.
from transformers_213.src.transformers.models.qwen2 import Qwen2Config, Qwen2Model
import torch
def run_qwen2():
qwen2config = Qwen2Config(
vocab_size=151936,
hidden_size=4096//2,
num_hidden_layers=32//2,
num_attention_heads=32,
intermediate_size=2048//2
)
qwen2model = Qwen2Model(qwen2config)
input_ids = torch.randint(0, qwen2config.vocab_size, (4, 30))
res = qwen2model(input_ids)
print(res)
if __name__ == "__main__":
run_qwen2()
1 Qwen2Config#
Qwen2Config contains some custom hyperparameters, such as vocab_size
, hidden_size
, num_hidden_layers
, num_attention_heads
, etc. Similar to dict
, you can call the hyperparameters inside: config.pad_token_id
.
1.1 Qwen2Model#
1.1.1 Initialization#
- Sets two properties of the model:
padding_idx
(used to specify the index of the padding token),vocab_size
(the size of the vocabulary) - Initializes the model's embedding layer, decoder layers, and normalization layer
- Embedding layer (
nn.Embedding
): The model uses the embedding layer to map the input tokens to dense vector representations. - Decoder layers (
nn.ModuleList()
): The model contains multiple decoder layers, all defined byQwen2DecoderLayer
. - Normalization layer
Qwen2RMSNorm
: The normalization layer uses Root Mean Square Layer Normalization. - Sets whether to use
gradient_checkpoint
, mainly to save GPU memory. - Calls
post_init()
to complete some initialization and preparation checks.
class Qwen2Model(Qwen2PreTrainedModel):
def __init__(self, config: Qwen2Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[Qwen2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = Qwen2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
For the post_init
function:
Mainly initializes parameters and initializes the gradient checkpoint function.
def post_init(self):
"""
A method executed at the end of each Transformer model initialization, to execute code that needs the model's
modules properly initialized (such as weight initialization).
"""
self.init_weights()
self._backward_compatibility_gradient_checkpointing()
1.1.2 Forward#
Here, only the core backbone is explained:
inputs_embeds = self.embed_tokens(input_ids)
# embed positions
hidden_states = inputs_embeds
for idx, decoder_layer in enumerate(self.layers):
# Save all hidden_states as a tuple
if output_hidden_states:
all_hidden_states += (hidden_states,)
# Pass hs into each decoder_layer
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
# Take the hs output from the previous decoder and pass it to the next layer
# Only the first one, the second is a type of cache, then enter the next layer
hidden_states = layer_outputs[0]
# Normalize the hidden_states after the last layer output
hidden_states = self.norm(hidden_states)
# Add the hidden_states from the last layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
- If
output_hidden_states
is saved, the first isinput_ids
foremb
, then saved to then-1
layer'sdecoder_layer
outpuths
, plus the last layer'slayer
outpuths
afternorm
. - Finally, it outputs in the form of
BaseModelOutputWithPast
.
To be continued...